

Next-Generation Mobile Networks and their Implications for Video Applications

Frank Bossen
DoCoMo Communications Laboratories USA, Inc.

Workshop on Future Directions in Video Coding Busan, Korea April 20, 2005

The Long Road to Multimedia in 3G

2001:

- □ Deployment of W-CDMA networks with up to 384kbps bandwidth
- ☐ MPEG-4 video and AAC available

2004:

- Multimedia traffic takes off
- Introduction of flat-rate pricing
- Business models matter just as much (more?)

Radio Access Technology Evolution

4G Network Architecture (simplified)

Next generation mobile networks and their implications for video applications Workshop on Future Directions in Video Coding, Busan, Korea, April 20, 2005

Mechanisms for Physical and Link Layers QoS (1)

- Adaptive Modulation and Coding (AMC)
 - Transmission power is kept constant
 - □ Packet loss rate is kept constant (very low)
 - Modulation is adapted to channel condition:
 - QPSK, 8-PSK, 16-QAM, 64-QAM (HSDPA)
 - □ Coding is adapted to channel condition:
 - Multiple code rates for FEC (Turbo coding)
- Hybrid Automatic Resend Request (H-ARQ)
 - Option to resend packet if no acknowledgment received within given time
 - □ Further reduces packet loss rate

Mechanisms for Physical and Link Layers QoS (2)

- Multiple QoS classes:
 - Conversational, Streaming, Background
 - Transmission parameters adapted to class
 - Queuing priority adjusted to class

Bottom line:

- "Good" state with very low packet loss rate
- "Bad" state with very high packet loss rate
- Variable channel capacity
- Requirement for video:
 - □ Ability to quickly recover from "bad" state

Application Spaces

Application	Transport	Expected PLR	Requirements
Conferencing	RTP/UDP/IP	0.1%	Occasional packet loss Fast recovery
Streaming	RTP/UDP/IP	0.01%	Occasional packet loss Fast recovery
Progressive Download	TCP/IP	<0.01%	
Broadcasting	RTP/UDP/IP	0.1%	Occasional packet loss Fast recovery
Messaging	TCP/IP	<0.01%	

Summary

- Mobile networks are evolving
 - All-IP, multiple radio access technologies
 - Significant increases in bandwidth
 - Significant reductions in packet loss rate
 - □ Two-state behaviour: "good" and "bad"
- Requirements for video
 - Coding efficiency
 - □ Low complexity
 - □ Resilience to occasional packet loss
 - Ability to quickly recover from catastrophic failures
- Remaining issues
 - Rate control for TCP streams
 - Latency reduction

The Video to come

- Small size to remain because of form-factor constraints
 - □ QCIF/CIF/QVGA
 - □ Several 100kbps
 - Frame rate to remain constrained by power consumption
- In more distant future:
 - □ Stereoscopic video using autostereoscopic displays
 - □ Higher resolutions with flexible displays
- Business model remains a big issue